Goto

Collaborating Authors

 Conway


ViT Enhanced Privacy-Preserving Secure Medical Data Sharing and Classification

arXiv.org Artificial Intelligence

Privacy-preserving and secure data sharing are critical for medical image analysis while maintaining accuracy and minimizing computational overhead are also crucial. Applying existing deep neural networks (DNNs) to encrypted medical data is not always easy and often compromises performance and security. To address these limitations, this research introduces a secure framework consisting of a learnable encryption method based on the block-pixel operation to encrypt the data and subsequently integrate it with the Vision Transformer (ViT). The proposed framework ensures data privacy and security by creating unique scrambling patterns per key, providing robust performance against leading bit attacks and minimum difference attacks.


Proactive Fraud Defense: Machine Learning's Evolving Role in Protecting Against Online Fraud

arXiv.org Artificial Intelligence

As online fraud becomes more sophisticated and pervasive, traditional fraud detection methods are struggling to keep pace with the evolving tactics employed by fraudsters. This paper explores the transformative role of machine learning in addressing these challenges by offering more advanced, scalable, and adaptable solutions for fraud detection and prevention. By analyzing key models such as Random Forest, Neural Networks, and Gradient Boosting, this paper highlights the strengths of machine learning in processing vast datasets, identifying intricate fraud patterns, and providing real-time predictions that enable a proactive approach to fraud prevention. Unlike rule-based systems that react after fraud has occurred, machine learning models continuously learn from new data, adapting to emerging fraud schemes and reducing false positives, which ultimately minimizes financial losses. This research emphasizes the potential of machine learning to revolutionize fraud detection frameworks by making them more dynamic, efficient, and capable of handling the growing complexity of fraud across various industries. Future developments in machine learning, including deep learning and hybrid models, are expected to further enhance the predictive accuracy and applicability of these systems, ensuring that organizations remain resilient in the face of new and emerging fraud tactics.


Enhancing Efficiency and Privacy in Memory-Based Malware Classification through Feature Selection

arXiv.org Artificial Intelligence

Malware poses a significant security risk to individuals, organizations, and critical infrastructure by compromising systems and data. Leveraging memory dumps that offer snapshots of computer memory can aid the analysis and detection of malicious content, including malware. To improve the efficacy and address privacy concerns in malware classification systems, feature selection can play a critical role as it is capable of identifying the most relevant features, thus, minimizing the amount of data fed to classifiers. In this study, we employ three feature selection approaches to identify significant features from memory content and use them with a diverse set of classifiers to enhance the performance and privacy of the classification task. Comprehensive experiments are conducted across three levels of malware classification tasks: i) binary-level benign or malware classification, ii) malware type classification (including Trojan horse, ransomware, and spyware), and iii) malware family classification within each family (with varying numbers of classes). Results demonstrate that the feature selection strategy, incorporating mutual information and other methods, enhances classifier performance for all tasks. Notably, selecting only 25\% and 50\% of input features using Mutual Information and then employing the Random Forest classifier yields the best results. Our findings reinforce the importance of feature selection for malware classification and provide valuable insights for identifying appropriate approaches. By advancing the effectiveness and privacy of malware classification systems, this research contributes to safeguarding against security threats posed by malicious software.


FIGO: Enhanced Fingerprint Identification Approach Using GAN and One Shot Learning Techniques

arXiv.org Artificial Intelligence

Fingerprint evidence plays an important role in a criminal investigation for the identification of individuals. Although various techniques have been proposed for fingerprint classification and feature extraction, automated fingerprint identification of fingerprints is still in its earliest stage. The performance of traditional \textit{Automatic Fingerprint Identification System} (AFIS) depends on the presence of valid minutiae points and still requires human expert assistance in feature extraction and identification stages. Based on this motivation, we propose a Fingerprint Identification approach based on Generative adversarial network and One-shot learning techniques (FIGO). Our solution contains two components: fingerprint enhancement tier and fingerprint identification tier. First, we propose a Pix2Pix model to transform low-quality fingerprint images to a higher level of fingerprint images pixel by pixel directly in the fingerprint enhancement tier. With the proposed enhancement algorithm, the fingerprint identification model's performance is significantly improved. Furthermore, we develop another existing solution based on Gabor filters as a benchmark to compare with the proposed model by observing the fingerprint device's recognition accuracy. Experimental results show that our proposed Pix2pix model has better support than the baseline approach for fingerprint identification. Second, we construct a fully automated fingerprint feature extraction model using a one-shot learning approach to differentiate each fingerprint from the others in the fingerprint identification process. Two twin convolutional neural networks (CNNs) with shared weights and parameters are used to obtain the feature vectors in this process. Using the proposed method, we demonstrate that it is possible to learn necessary information from only one training sample with high accuracy.


Private Facial Diagnosis as an Edge Service for Parkinson's DBS Treatment Valuation

arXiv.org Artificial Intelligence

Facial phenotyping has recently been successfully exploited for medical diagnosis as a novel way to diagnose a range of diseases, where facial biometrics has been revealed to have rich links to underlying genetic or medical causes. In this paper, taking Parkinson's Diseases (PD) as a case study, we proposed an Artificial-Intelligence-of-Things (AIoT) edge-oriented privacy-preserving facial diagnosis framework to analyze the treatment of Deep Brain Stimulation (DBS) on PD patients. In the proposed framework, a new edge-based information theoretically secure framework is proposed to implement private deep facial diagnosis as a service over a privacy-preserving AIoT-oriented multi-party communication scheme, where partial homomorphic encryption (PHE) is leveraged to enable privacy-preserving deep facial diagnosis directly on encrypted facial patterns. In our experiments with a collected facial dataset from PD patients, for the first time, we demonstrated that facial patterns could be used to valuate the improvement of PD patients undergoing DBS treatment. We further implemented a privacy-preserving deep facial diagnosis framework that can achieve the same accuracy as the non-encrypted one, showing the potential of our privacy-preserving facial diagnosis as an trustworthy edge service for grading the severity of PD in patients.


Keyphrase Extraction with Sequential Pattern Mining

AAAI Conferences

Existing studies show that extracting a complete keyphrase candidate set is the first and crucial step to extract high quality keyphrases from documents. Based on a common sense that words do not repeatedly appear in an effective keyphrase, we propose a novel algorithm named KCSP for document-specific keyphrase candidate search using sequential pattern mining with gap constraints, which only needs to scan a document once and automatically specifies appropriate gap constraints for words without users’ participation. The experimental results confirm that it helps improve the quality of keyphrase extraction.